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OUTLINE OF THE PRESENTATION

I) The Japanese knotweed: ecology and model.

II) Simulation study of the model: Calibration.

III) Simulation study of the model: Influence of mowing parameters.
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The Japanese knotweed

Japanese knotweed Rhizome

Stem: from 1 to 3 meters.

Rhizome: up to 8 cm diameter, length: 15 - 20 m, depth: 2 - 3 m,
represents 2/3 of the total biomass of the plant.

The rhizome withstands the cold and enables to spend the bad season
burried in the ground.
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Clonal development of the Japanese knotweed.

Figure: Diagram of the development of stems and buds along the rhizome,
extracted from[Adachi et al., 1996] as: current aerial shoot, ds: dead aerial shoot,
rb: rhizome, sc: shoot clump, lb: lateral bud, wb: winter bud.

References: [Adachi et al., 1996], [Dauer and Jongejans, 2013],
[Price et al., 2002], [Beerling et al., 1994], [De Waal, 2001].
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Dynamical model for the knotweed

Objective: Describe the dynamics of Japanese knotweed at the local scale
and the effects of mowing on it.

The mathematical formalism is the one of the measure-valued
stochastic processes.

The model presented in this section is inspired by the work of
[Fournier and Méléard, 2004] and [Tran, 2006].

The individuals, here the crowns (i.e. the places where the terminal buds
are located and from which the stems sprout) are characterized by:

their position (in the plan)

a trait describing the underground biomass (i.e. that of the rhizome
that is connected to the crown).
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Events occurring in the model

At each time, we calculate the next time at which there is an event. There
are three possible events:

a birth of a new crown: birth rate depending on positions, law for the
dispersal distance and intra-specific competition zone

a death of a crown: mortality rate depending on biomass

the mowing of a proportion proportionMowing of individuals in the
population. The effect of mowing is a decreasing function of the the
biomass.

Between those events, the biomass of each crown evolves in a
deterministic way.
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Random mowing technique

Figure: Represents the crowns that would be mown during a mowing event with
the Random technique. A proportion of mown plants is imposed. The coordinates
are in meters.
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Side mowing technique

Figure: Represents the crowns that would be mown when imposing a position at
the right of which all plants are mown.
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Model Parameters

Variable Description
Biomass
K maximal biomass (g)
L growing rate for low biomasses
a0 initial biomass of a born crown (g)
Mowing
mowingParameter effect of mowing
Mortality
deathParameterScaling for the small biomasses
deathParameterDecrease decrease speed of the mortality rate
Birth
distanceParent distance of apical dominance (m)
distanceCompetition intra spécific competition distance (m)
b̄ birth rate (ideal conditions)
(shape, scale) Gamma law, dispersion of the created individual

Management parameters:

initial population size: InitialPopSize

mean number of mowing events a year: τ

management project duration: T

proportion of mown crowns: proportionMowing
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ANALYSIS OF THE MODEL BY
SIMULATIONS

CALIBRATION
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Data

Figure: From [Martin et al., 2018].

19 stands of knotweeds in the
French Alps (various altitudes).

Measurements carried out in 2008
and in 2015: on the stands them-
selves (outline, number of stems,
...) and on biotic and abiotic vari-
ables.

Variability in observed stands: size
(less than 1m2 to more than
100m2), area (proximity of wa-
tercourse, road, forest, abandoned
land)
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Data - Calibration

In model outputs, we have the final and initial population areas and
sizes.

We use data on areas and densities of stands (so we have access to
the size of the population) in 2008 and 2015, and information from
managers: number of mowing events, proportion mown.
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Method for the calibration

The OpenMOLE software proposes a method derived from genetic
algorithms for the calibration of models.

The algorithm explores the parameter space to find the minimal distance
between the observations and the simulations (the algorithm manages the
stochasticity of the model).

As distance between simulations and observations, we take for each stand
and each type (area or size) the distance: |simu−data|

data .

Reference : [Romain Reuillon, 2013]
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The result of the calibration

Variable Valeur Calibration
K 12.72
L 0.26
distanceCompetition 0.15
distanceParent 0.20
shape 4.34
scale 2.36
deathParameterDecrease 2.32
deathParameterScaling 1.12
mowingParameter 0.11
bbar 0.18
a0 1.73
delta 26.06
evolution.samples 79

These calibrated values agrees with experts’ statements on distances, the ratio of
the maximum biomass and the biomass of the individuals at birth, mortality rate.
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ANALYSIS OF THE MODEL BY
SIMULATIONS

INFLUENCE OF MOWING
PARAMETERS

François Lavallée Model of management for the evolution of a knottweed stand 11/13/2018 15 / 25



Law of the outputs

Results of Shapiro Wilk test (H0 = “ Outputs are i.i.d gaussian ” ):

Output reject H0 do not reject H0 extinction
Initial Area 203 851 0
Final Area 154 754 146
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Figure: Probability Distribution Function of the final area, obtained with an initial population
size = 1500, τ = 4, proportionMowing = 0.9, and T = 8.

François Lavallée Model of management for the evolution of a knottweed stand 11/13/2018 16 / 25



Comparison of initial and final area densities.
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Figure: Density of the Gaussian laws of the initial and final areas, obtained from the
empirical averages and variances. Initial population size = 1500, τ = 4,
proportionMowing = 0.9, and T = 8.
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Influence of T on the mean final area

We plot the regression curves obtained for different τ . [Ini-
tialPopSize = 1500 and proportionMowing = 0.9 fixed].
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Figure: Quadratic regression curves of the mean final area as a
function of T , for different τ .

Figure: Cross
section.
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Influence of T on the mean final area

We perform a quadratic regression on strictly positive values of outputs for the
area (using lm function in R).

Output r squared > 0.95 correlation > 0.95 Shapiro > 0.05
Mean Final Area 47 50 49

Table: Each number refers to a number of regressions, over the 50 in the sampling (variation of
initial Population size and τ > 2.5).

Figure: Quadratic regression for the mean area vs T, with τ = 8, and initial population size = 500.
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Summary of the influences of the management parameters
on the average values of the outputs

Initial / Final Param Mean Area Mean Size

Initial InitialPopSize linear ↗ linear↗

Final InitialPopSize linear ↗ linear ↗

Final T
linear↗ (τ weak) linear ↗

quadratic ↘ (τ high) exponential ↘

Final τ weak linear ↗ or ↘ linear ↘

Final τ high linear ↘ exponential ↘
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Formulas for the final size and area

We have the more general result:

Result

For τ & 2:

Final Size = Initial Size × exp(−T .(τ − a)/b), (1)

with a, b ∈ R constants,

and,

Final Area = max((c × τ + d)× T 2 + 0.04× Initial Size, 0)

with c , d ∈ R constant.
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Method to assess formulas

Sobol sampling of 5000 points with τ ∈ [0; 15.0], T ∈ [0; 20], and
initialPopSize ∈ [100; 1500].

Mean Area Mean Size

Regression tool lm nls

Correlation > 0.99 > 0.99

Residual standard error 2.23 26.12

95 % confident interval
c ∈ [−0.0342;−0.0336] a ∈ [0.90; 0.94]

d ∈ [0.0960; 0.0998] b ∈ [20.46; 20.77]
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Important remark for the formulas

Formulas obtained for the mean output quantities are still relevant for direct outputs.

Figure: Black circles represent stand sizes resulting of 50 replications with τ = 4, initial
population size = 1000, and varying T . The red line is the function of T defined by
Equation (1). It has been found with a regression on a far bigger set of points than the
subset selected to plot this example.
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Perspectives

Take an interest in two other questions managers face:

At the scale of a landscape with several knotweed stands, how to
distribute the mowing effort (intensity / frequency) between the
different stands?
→ Modeling the dispersion due to mowing.

Compare mechanical engineering (mowing) vs ecological engineering
(willow)?
→ Model the influence of the shadow on the dynamics of knotweed.

Pose viability problems in stochastic formalism.

Question:

about the statistical method used to study the influence of
management parameters: regression, Shapiro test,...
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Thanks for your attention.

OpenMOLE user case, joint work with G.Chérel

https://blog.openmole.org/

The eX Modelo school on model exploration methodology

https://exmodelo.org/
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Poisson Point Measure

An application M : Ω× E → R+ is a random measure if

ω → M(ω,A) is a random variable for each A ∈ E

A→ M(ω,A) is a measure on (E , E) for each ω ∈ Ω. We denote
M(A) this random variable.

The term ”random measure” means that M is a random variable that
associate a measure Mω to each event ω ∈ Ω.

Définition

Let (E , E) be a measurable set and ν be a measure on (E , E). A random
measure N on (E , E) is a Poisson random measure with intensity ν if :
- for each A ∈ E, the random N(A) has a Poisson law with parameter
ν(A).
- for each A1, . . . ,An ∈ E disjoints, random variables (N(A1), . . . ,N(An))
are independents, for all n ≥ 2.



Law of the output, with extinction

Figure: Empirical Cumulative Distribution Function of a Gausssian law with empirical
mean and variance of the final area, for an initial population size = 1500, τ = 10,
proportionMowing = 0.9, et T = 14. There are 21 extinctions (over 50 simulations).
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