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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
Introduction

Introduction

Avalanche event in Chamonix, France1

Snow avalanches are complex
phenomena.

Avalanche models provide a
simplification of the avalanche
flow (equations based on mass
and momentum conservation).

The models depend on
parameters poorly-known.

Accurate estimation is needed since the
knowledge of the parameter values is required
for land-use planning and hazard mapping.

1
https://www.chamonix.net/francais/events/lectures-danger-d-avalanches/5483
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The avalanche model

The avalanche model

The mass and momentum conservation equations:

∂h

∂t
+
∂hv

∂x
= 0,

∂hv

∂t
+

∂

∂x

(
hv2 + g

h2

2

)
= h (g sin θ − F) .

The avalanche model.

where v = ‖~v‖ is the flow velocity, h is the flow depth, θ is the local
slope, g is the gravity constant and F = ‖~F‖ is the Voellmy frictional
force:

F = µgcosθ +
g

ξh
v2 (1)

where µ and ξ are the friction parameters [Naaim et al., 2004].
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The avalanche model: The parameters

Inputs Model Outputs

µ ξ σ2

xstart lstart hstart

topo

f Y =





v ∈ RT

h ∈ RT

xrunout

1

Param. Description Uncertainty interval
µ Own properties of the avalanche. 0.01-0.65
ξ Geometry of the avalanche and terrain roughness 200-10000
lstart Length of the slab at the release zone [m] 5-100
hstart Depth of the slab at the release zone [m] 0.1-4
xstart2 The release abscissa [m] 0.01-285
σ Altitude Digital Elevation Model error [m] 0-0.15

Table: Parameters description and uncertainty intervals.

2Release zone average slope superior to 37◦
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The avalanche model: The topography

Inputs Model Outputs

µ ξ σ2

xstart lstart hstart

topo

f Y =





v ∈ RT

h ∈ RT

xrunout

1
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The geometry of the avalanche path 1.

The Lautaret avalanche test site. Obtained
from [Thibert et al., 2015].
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The avalanche model: The outputs

Inputs Model Outputs

µ ξ σ2

xstart lstart hstart

topo

f Y =





v ∈ RT

h ∈ RT

xrunout

1

The functions v and h are discretized on the points (x1, . . . , xT ) ∈ RT .

v : velocity profile calculated in the discretization.
h : snow depth profile calculated in the discretization.
xrunout: The runout abscissa.

Outputs: 1 scalar and two vectors.
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The Aggregated Sobol indices

The aggregated Sobol indices

Y = f(X) the p multivariate output of the model f that depends on d random
inputs X = (X1, . . . Xd).

The random inputs X1, . . . Xd are supposed independent.
E(‖Y ‖2) <∞ where ‖‖ is the Euclidean norm.
The covariance matrix of Y , denoted by Σ is positive definite.

Let u ⊆ {1, . . . d} and ∼ u be its complementary in {1, . . . d}. We set
Xu = (Xi)i∈u.
There is an unique Hoeffding decomposition of f [Hoeffding, 1948]:

f(X) = f∅ + fu(Xu) + f∼u(X∼u) + fu,∼u(Xu, X∼u), (2)

where f∅ = E[Y ], fu = E(Y |Xu)− f∅, f∼u = E(Y |X∼u)− f∅ and
fu,∼u = Y − fu − f∼u − f∅.
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The Aggregated Sobol indices

Thanks to the orthogonality:

Σ = Cu + C∼u + Cu,∼u, (3)
where Σ, Cu, C∼u and Cu,∼u are the covariance matrices of
Y, fu(Xu), f∼u(X∼u) and fu,∼u(Xu, X∼u), respectively.

Equation (3) can be projected on a scalar:

Tr(Σ) = Tr(Cu) + Tr(C∼u) + Tr(Cu,∼u), (4)

where Tr denotes the trace operator.

If Tr(Σ) 6= 0, the aggregated Sobol indice with respect to u is
defined as [Gamboa et al., 2013, Lamboni et al., 2011]:

0 ≤ Su(f) =
Tr(Cu)

Tr(Σ)
≤ 1 (5)
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The dimension reduction

Functional Principal Component Analysis

Aim: To approximate the sample function e.g., v1, . . . , vN ∈ RT on an basis
ΨT×K where K ≤ T :

vj(x) ≈ v(x) +
K∑
k=1

α
(v)
j,kψ

(v)
k (x) (6)

where x ∈ R+, j ∈ {1, . . . N}, v(x) is the mean of {v1(x), . . . , vN (x)}, and α(v)
j,k is

the coefficient of the jth on the kth component.

The method proposed by [Ramsay and Silverman, 2005] searches for the basis
functions ψ(v)

1 , . . . ψ
(v)
K and the coefficients α(v)

j,k , j ∈ {1, . . . n}, k ∈ {1, . . .K} that
minimizes:

N∑
j=1

∫
R+

(
vj(x)− v(x)−

K∑
k=1

α
(v)
j,kψ

(v)
k (x)

)2

dx, (7)

such that the functions ψ(v)
1 , . . . , ψ

(v)
K are orthonormal.
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The dimension reduction

Solution: To apply PCA to Ŷ , the sample functions evaluated in the discretized
points x1, . . . xT ∈ R+

([Lamboni et al., 2011, Nanty et al., 2017, Ramsay and Silverman, 2005]).

Ŷ =


v1(x1)/Nv . . . v1(xT )/Nv h1(x1)/Nh . . . h1(xT )/Nh xrunout,1(x1)/Nxrunout

.

.

.
.
.
.

.

.

.
.
.
.

vN (x1)/Nv . . . vN (xT )/Nv hN (x1)/Nh . . . hN (xT )/Nh xrunout,1(xN )/Nxrunout


where:

Nv = max
1≤j≤N
1≤t≤T

vj(xt), (8)

and similar for Nh and Nxrunout .
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The dimension reduction

The PCA decomposition of Ŷ is based on the expansion of Σ′, the
variance-covariance matrix of Ŷ :

Σ′ =

2×T+1∑
k=1

ukvkvTk (9)

with u1 ≥ . . . ≥ uq the eigenvalues of Σ′ and v1, . . . ,vp a set of normalized and
mutually orthogonal eigenvectors associated to these eigenvalues. We have the
approximation:

Ŷ ≈ EŶ +
K∑
k=1

hkvk (10)

where K ≤ 2× T + 1.

The aggregated Sobol indices are calculated on H = [h1, ..., hK ].
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The Results

The Scalar Sobol indices

Technical details
The R package [R Core Team, 2017] sensitivity developed by [Pujol et al., 2017]
is used to calculate the indices and we used the estimation proposed by
[Tissot and Prieur, 2015]. 20.000 model simulations were made to estimate the
indices.

The Scalar Sobol indices
a) xrunout distance
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The Results

The Scalar Sobol indices
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velocity and snow depth. The avalanche path is shown with a black line.
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The Results

The Scalar Sobol indices

2100

2200

2300

2400

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800
Abscissa [m]

A
lti

tu
de

 [m
]

S
obol first order indice

2100

2200

2300

2400

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800
Abscissa [m]

A
lti

tu
de

 [m
]

S
obol first order indice

Parameter
µ

ξ

hstart

lstart

xstart

σ2

inter.

Scalar Sobol indices of the vector whose components are the evaluation of the functional
velocity and snow depth. The avalanche path is shown with a black line.

2100

2200

2300

2400

0

50

100

150

200

0 200 400 600 800
Abscissa [m]

A
lti

tu
de

 [m
] S

I×
V

ar V
x

2100

2200

2300

2400

0

50

100

150

200

0 200 400 600 800
Abscissa [m]

A
lti

tu
de

 [m
] S

I×
V

ar H
x

Parameter
µ

ξ

hstart

lstart

xstart

σ2

inter.
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The Results

The Scalar Sobol indices
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Upper panel: The aggregated Sobol indice. Lower panel: The percentage of explained
variance in function of the number of PCs.
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
The Results

The Scalar Sobol indices

Conclusions
The scalar Sobol indices provide useful information about
the parameters sensitivity but redundant.
The aggregated Sobol indices summarize the importance of
the model parameters.
The parameter µ is the most influential parameter to the
velocity output.
The parameters xstart, lstart and hstart are the most
influential to the snow depth output.

Perspectives
To perform a similar sensitivity analysis in other paths to
generalize the results.
To use a more complex dynamic avalanche model (e.g.,
potentially 3-D).
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Sensitivity analysis of an avalanche flow dynamics model using aggregated indices
Annex

The Highest Density Region plot

Tool for visualizing large amounts of functional data based in the estimation of
the bivariate kernel density function of the two first components of the
decomposition of the functional data Y [Hyndman and Shang, 2010]:

f̂(z) =
1

n

n∑
i=1

Khi (z − Zi), (11)

where z ∈ R2, Z = {Z1, . . . , Zn} ∈ R2 is the set of bivariate scores of the PCA, K
is a kernel function and hi is a bandwidth for the ith dimension.
The HDR (Highest Density Region) is defined as:

Rα = {z ∈ R2 : f̂(z) ≥ fα} (12)

where fα is such that
∫
Rα

f̂(z)dz = 1− α.
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Annex

The HDR boxplot shows:

The regions of highest density α = 0.5 (light gray) and α = 0.99 (dark gray).
The outliers defined as the points that do not belong to these two regions
(color lines).
The mode (the curve with the highest density, black line).
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Functional HDR boxplots for the velocity (left panel) and snow depth (right panel)

Back to the presentation .
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